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Abstract. We describe the realization of atom-optical elements as magnetic waveguide potentials, beam
splitters and gravitational traps on a microchip. The microchip was produced by electroplating gold con-
ductors on an aluminium-oxide substrate. The conductors are 30–150 µm wide and allow for the generation
of waveguides at large distances to the chip surface, where surface effects are negligible. We show that these
elements can be integrated on a single chip to achieve complex atom-optical circuits.

PACS. 03.75.Be Atom and neutron optics – 39.25.+k Atom manipulation (scanning probe microscopy,
laser cooling, etc.) – 39.90.+d Other instrumentation and techniques for atomic and molecular physics

1 Introduction

The manipulation of Bose-Einstein condensates by means
of microscopic electromagnets [1,2] has developed into an
intensive field of research during the past years. The vi-
sion of matter-wave interferometers and the control of sin-
gle atoms [3] seems within reach by using micron scaled
potential structures at a chip surface. Current micro fab-
rication technologies allow the production of high qual-
ity electromagnets which meet the requirements of con-
trolling the motion of atoms on the quantum level. On
the other hand, some limitations of atom chips have re-
cently been explored including spin-flip losses near metal-
lic surfaces [4], dispersive atom-surface interactions [5],
and technical limitations such as geometrical imperfec-
tions of micro electromagnets [6,7]. As important as mi-
cron scaled potential barriers are smooth waveguide po-
tentials in atom-optical circuits. These enable guiding and
splitting of matterwaves, similar to the manipulation of
photons in optical fibers and beam splitters. It is prefer-
able to form such waveguides relatively far from the chip
surface where the cloud is less affected by surface effects.

In this article, we describe magnetic waveguides, beam
splitters, and gravitational traps. These atom-optical ele-
ments are all implemented on a single chip (Fig. 1) cur-
rently used in our groups, which is routinely loaded with
Bose-Einstein condensates [8]. It has been produced by
electroplating a 6 µm thick gold layer on a 250 µm thick
aluminium-oxide substrate. The minimal width and spac-
ing of the conductors is 30 µm. The chip consists of three
conductors with a constant width of 100 µm (QP1–QP3)
and nine additional conductors with varying width (Gi).
Perpendicular conductors on the back side of the chip
allow positioning of the trap parallel to the conductors
QP [8]. Experimentally, we found that in a pulsed duty

a e-mail: kraft@pit.physik.uni-tuebingen.de

QP2

QP3

QP1

Gi

Gi15
00

 µ
m

Fig. 1. Complex atom-optical circuit. Waveguide and interfer-
ometer geometries as well as gravitational traps are arranged
between QP1–QP2 and QP2–QP3. The QP conductors define
a central waveguide from which neighboring microtraps can be
loaded adiabatically.

cycle (3 s operation time in 60 s cycle time) the 100 µm
and 30 µm wide conductors can carry a current up to
2 A and 1 A, respectively. An atomic cloud, initially con-
fined in a waveguide potential above QP2 can be adiabat-
ically loaded into the microtraps between QP1 and QP2,
as well as between QP2 and QP3. Neighboring traps can
exchange atoms directly, more distant traps are connected
via waveguides.

2 Highly elongated traps

A simple waveguide is formed by the circular field of a
thin current carrying conductor superimposed by a ho-
mogeneous bias field [9–11]. The two fields compensate
each other along a line parallel to the conductor. Cen-
tered around this line, the magnetic field is well approx-
imated by a two dimensional quadrupole, and paramag-
netic atoms in a low field seeking state become trapped
in radial direction. The quadrupole channel is character-
ized by the gradient of the magnetic field in the radial
direction ar. If an additional magnetic offset field Boff is
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Fig. 2. Waveguide with parallel conductors on a chip. (Top)
Microscope image of the chip. (Bottom) Conductor geometry.
If the center conductor G3 is driven with a current oppo-
site in direction to the outer conductors (QP1, G1, G2, G4,
G5 and QP2), a waveguide potential forms. With pair wise
equal currents in QP1–QP2, G1–G5, and G2–G4, the waveg-
uide forms above G3.

applied parallel to the waveguide [12], the radial confine-
ment becomes harmonic, characterized by the radial os-
cillation frequency ωr = ar

√
gFµBmF/(mBoff), with the

Landé factor gF, the mass of the atom m, and the Bohr
magneton µB. In this article, the trap frequencies are cal-
culated for 87Rb atoms in the F = 2, mF = 2 hyperfine
ground state.

2.1 Waveguides with parallel wires

A waveguide potential with parallel on-chip conductors
has been demonstrated [13]. Here, we describe the real-
ization of a waveguide which allows increasing the radial
compression by using additional wires for the bias field.
The section of the chip used to build the waveguide con-
sists of 7 parallel conductors (Fig. 2). Five conductors of
the width 30 µm are in the center area (G1–G5) with cen-
ters separated by 60 µm. Another two, wider conductors
QP1 and QP2 (100 µm width) complete the set-up. The
centers of these outer conductors are 375 µm from the
conductor G3 in the middle. The current of G3 is oppo-
site in direction to the other conductors. The waveguide is
centered above G3 by pair wise using the same currents:
IG2 = IG4, IG1 = IG5 and IQP1 = IQP2. The circular mag-
netic field of the center conductor is then superposed by
the bias field arising from the outer conductors. In this ge-
ometry the radial gradient is not only due to the gradient
of the central conductor but also due to a gradient of the
inhomogeneous bias field.

For simplification, let us first assume a waveguide
achieved by the three conductors G2, G3, and G4 of Fig-
ure 2. The separation between the middle of the conduc-
tors is d. The magnetic field on the y-axis of this config-
uration is given by the sum of the fields of the central
conductor and of the outer conductors

B(x = 0, y) = −µ0

2π

IC

y
+

µ0

π

IOy

d2 + y2
,

with IC the current in the central conductor G3 and IO

the current in each of the outer conductors G2 and G4.

Table 1. Gradients and radial oscillation frequencies of the
waveguide (Fig. 2) for different distances y0 above the central
conductor G3. To calculate the trap frequencies, a homoge-
neous offset field of 1 G along the waveguide was assumed.

y0 IQP IG1,G5 IG2,G4 IG3 ar νr

[µm] [A] [A] [A] [A] [T/m] [kHz]

100 2 0.9 0 1 27 3.5

90 2 1 0.044 1 34 4.3

80 2 1 0.164 1 42 5.3

70 2 1 0.31 1 54 6.9

60 2 1 0.5 1 74 9.4

50 2 1 0.773 1 111 14.1

40 2 1 1 0.861 163 20.7

30 2 1 1 0.544 203 25.8

20 2 1 1 0.266 244 31

10 2 1 1 0.071 277 35.2

The waveguide forms at a distance y0 to the surface:

y0 = d

√
IC

2IO − IC
.

The radial gradient ar is given by the derivative of the
magnetic field at this point. In terms of the current in the
outer conductors IO and the distance of the trap center
to the chip y0 the gradient is given by

ar(IO, y0) =
µ0

π

IO

d2

1
(1 + (y0/d)2)2

.

There are two ways to increase the gradient. One is to
increase the current in the outer conductors IO. As this
reduces y0, it increases the gradient stronger than linearly.
However, the flow of the dissipated heat sets an upper
limit IO,max for this current. The other way is to lower y0

by decreasing the current in the central conductor IC. At
IC = 0, the maximal possible gradient of

ar,max = 4
µ0

2π

IO,max

d2

is reached, in the limit of touching the conductor. This
corresponds to a waveguide build only by two wires with
currents in the same direction [14].

In the set-up shown in Figure 2, additional pairs of
wires contribute to the bias field. The increased bias field
allows higher current in the central conductor and hence
increases the maximal possible gradient at the position of
the trap. For the seven-wire configuration and with cur-
rents of 1 A in G1, G2, G4, G5 and 2 A in QP1, QP2,
we calculate a radial gradient of ar(y0 = 0) = 289 Tm−1.
With an axial offset field of 1 G, the radial oscillation fre-
quency is ωr(y0 = 0) = 2π × 36.8 kHz. Table 1 shows typ-
ical values for different currents in the conductors. Note,
that the currents in the conductors producing the bias
field are not driven equally. For traps near to the surface,
a small distance of the conductors generating the bias field
to the central conductor is favorable, while for traps far
from the surface, a bigger distance is preferable. More con-
ductors increase the flexibility for choosing the position of
the bias field generating elements.
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Fig. 3. In the folded alignment, the circular magnetic field of
the central conductor generates its own bias field. This adds
to the compression due to the outer conductors and increases
the confinement.

Table 2. Gradients and radial oscillation frequencies of the
waveguide produced by a folded wire configuration (Fig. 3)
for different distances y0 above the central conductor G3. To
calculate the trap frequencies, a homogeneous offset field of
1 G along the waveguide was assumed.

y0 IQP IG1,G5 IG2,G4 IG3 ar νr

[µm] [A] [A] [A] [A] [T/m] [kHz]

100 1.35 0 0 1 26 3.3

90 2 0.25 0 1 36 4.5

80 2 1 0.03 1 49 6.2

70 2 1 0.764 1 68 8.6

60 2 1 1 0.696 68 8.6

50 2 1 1 0.421 62 7.9

40 2 1 1 0.242 58 7.3

30 2 1 1 0.125 54 6.9

20 2 1 1 0.0525 52 6.6

10 2 1 1 0.0128 48 6.1

2.2 Folded waveguide configuration

A chip with a set of parallel conductors as in Figure 2
allows tight radial confinement even with moderate cur-
rents. However, the waveguide is located at a rather small
distance to the chip surface. Imperfections of the con-
ductor geometry may thus make the potential of the
waveguide irregular leading to undesired fragmentation of
atomic clouds [6,7].

To achieve a smooth waveguide potential a large
surface–waveguide distance is preferable. When the total
number of conductors is fixed a folded wire configuration
(Fig. 3) can increase the radial gradient at certain dis-
tances. In this set-up, the folded upper and lower parts
of the central conductor contribute to the bias field of
the outer conductors. The contribution becomes relevant
for currents in G3 which are comparable to the current
in the outer conductors and is negligible for smaller cur-
rents. For small currents, i.e. traps near the surface of the
chip, the maximum achievable compression and gradient
are reduced compared to the previous set-up (Fig. 2) be-
cause the conductors generating the bias field are further
away from the center. Table 2 shows gradients and trap
frequencies for the same set of distances as in Table 1. The
variation of the gradient with the distance is reduced com-
pared to the set-up with straight conductors. At working
distances of 70–100 µm, however, the gradient is larger in
this configuration. At larger distances the solution with
straight conductors produces larger trap frequencies. This

is because in the folded geometry the inner conductors
contribute to the bias field. For large distances it would
be preferable to place the conductors generating the bias
field further from the middle conductor.

Comparing the two geometries shows that folding the
central conductor increases the radial confinement at cer-
tain distances. As part of the bias field is always produced
by the inner conductor one looses flexibility in choosing
the field generating elements as freely as in the set-up
with straight conductors. This leads to a smaller bias field
outside of the ideal distance range.

3 Beam splitters

A more complex atom optical element than a waveguide
is a beam splitter [11], in which the atomic matter wave
is divided into two parts. In atom-optical circuits, the di-
vided matterwave would propagate in separate waveguides
before an inverse beam splitter would recombine them pro-
ducing interference.

Figure 4 shows two different principles to realize a
beam splitter. Both rely on two wires driven with currents
in the same direction and a homogeneous bias field B⊥.
The chip surface is assumed to be horizontal with the grav-
ity parallel to the surface vector.

3.1 Beam splitters based on a varying bias field

The field of two parallel conductors combined with a vari-
able bias field can be used for splitting an atomic wave
function [15]. Figure 4a illustrates the geometry and the
trajectories of waveguide potentials for a varying bias field.
Initially, in a small bias field (1), two quadrupole waveg-
uides are located on the y-axis. While the bias field is
increased, the two waveguides approach each other. At
a critical bias field Bcrit = (µ0/2π)(I/d) they merge to a
hexapole (2) at a distance d to the surface of the chip. The
distance d is half of the separation between the two con-
ductors. Further increase of the bias field splits the waveg-
uide into another two quadrupole waveguides. They move
along a half circle to the position of the conductors (3).

The realization of such a beam splitter in our set-up is
shown in Figure 2. The beam splitter geometry is achieved
by applying currents in G2 and G4 as well as in QP1 and
QP2 for generating the bias field. When the current in
these conductor is increased the bias field increases.

3.2 Beam splitters based on varying the distance
between the conductors

Another possible implementation of a beam splitter is
shown in Figure 4b. The bias field stays constant while
the distance d(z) between the conductores varies [16].

If the distance d of the two conductors to the y-axis is
smaller than a critical distance dcrit = (µ0/2π)(I/B⊥) (1),
the two waveguides lie on the y-axis (I is the current in



122 The European Physical Journal D

x

y

I I

B (t)

d d

(1)

(3)

(1)

(3)
(2)

x

y
b) d=d(t); B =const

B

d(z) d(z)

(1)

(3)

(1)

(3)(2)

a)  d=const; B =B (t)

dcrit
I I

Fig. 4. Beam splitter geometries. (a) Beam splitting by chang-
ing the bias field above two conductors separated by a constant
distance. The trajectories of quadrupole waveguides is shown
while the bias field changes. (b) Beam splitting with constant
bias field and changing the distance between the conductors.
The trajectories of the waveguide potentials are shown as ex-
plained in the text.
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Fig. 5. Realization of beam splitters (and inverse beam split-
ters) on a chip. (a) Interferometers are defined by the pairs
of conductors G1+G5 and G2+G4. The bias field can be gen-
erated by QP1 and QP2. In (b) the conductors G1, G2, G4
and G5 can be used for beam splitters. The separation of the
waveguides is faster then in (a) due to the instantaneous in-
crease of the distance of the conductors. The conductor (G3)
and a bias field generated by the surrounding conductors define
another interferometer.

both of the conductors). As the distance between the con-
ductors increases, the waveguides merge vertically into a
single hexapole waveguide at the distance dcrit from the
surface (2). Further increasing the distance of the con-
ductors splits the waveguides into two quadrupoles which
separate at constant height above the chip surface.

The set-up introduced in this article includes multiple
on-chip beam splitters with varying distance. Examples
are shown in Figure 5. The conductor geometry defines the
separation, trajectories and finally the area of the inter-
ferometer, enclosed by the waveguides. The bias field can
either be generated by external coils or by the conductors
QP1 and QP2. The set-up in (a) consists of two interfer-
ometers using either the pair G1 +G5, or G2 +G4 and
a bias field. In (b) the conductors G1 +G5 and G2 +G4
form interferometers with the same maximal separation
of the atoms. However, due to the rapid increase of the
distance of the conductors the waveguides separate faster.
The conductor G3 realizes another interferometer. Here,
the current splits into two branches and is recombined at a
further position. Unbalance may occur if the current does
not split up equally.

Figure 6 shows trajectories of the waveguide center for
an interferometer formed by the conductors G2 and G4 in
Figure 5b. The current in each conductor is 0.5 A. A bias
field of 5 G is applied. Figure 6a shows a projection onto
the (y − z)-plane. Due to gravity, after recombination a
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Fig. 6. Trajectories of the waveguide center for the interfer-
ometer shown in Figure 5b. The current in the conductors G2
and G4 is IG2 = IG4 = 0.5 A. An additional homogeneous bias
field of B⊥ = 5 G is applied. (a) and (b) show projection onto
the (y − z)- and (x − z)-planes, respectively.

condensate will choose the lower branch for z < −100 µm
and z > 100 µm.

Although the micro fabricated conductor pattern pro-
vides a well defined geometry and precise control over
magnetic fields, the operation of these beam splitters is
sensitive to ambient magnetic stray fields. A magnetic field
along the y-axis changes the trajectories such that merging
of the quadrupole waveguides is inhibited. Instead, they
pass each other. The adjustment of the beam splitters may
thus be nontrivial.

4 Gravitational traps

Let us consider the beam splitter with constant bias field
and varying distance between the conductors (Sect. 3.2).
The variation of the distance between the conductors, as
long as it is smaller than the critical distance, only changes
the height of the waveguides above the chip. Provided that
the chip is mounted horizontally and the experiments are
performed in gravity, a gravitational potential arises. Po-
tential wells and hills along the waveguide can be achieved
by changing the conductor geometry.

4.1 Two wires with changing separation

A waveguide with a gravitational axial confinement can
be realized by two curved conductors and a bias field
(Fig. 7). The waveguide forms with varying distance to
the chip surface. Calculating the potential for a current
of 1 A in the curved conductors and a bias field of 10 G
(Fig. 7b) yields that around its minimum z = 0, the poten-
tial can be approximated by a parabola with a curvature
of b = 521 Tm−2. The height variation of 94 µm leads to
a trap depth of 9.6 µK, sufficient to trap a condensate or
a thermal cloud near the critical temperature. The overall
distance of more than 300 µm to the chip surface assures
that the potential of the waveguide is not influenced by
imperfections of the conductors. A condensate could thus
oscillate nearly unperturbed in such a trap. The oscillation
frequency can be calculated by considering the potential
energy:

U = mgh =
1
2
mgbx2 =

1
2
kx2
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Fig. 7. Gravitational trap. (a) Implementation of a gravita-
tional trap for cold atoms on a chip. The magnetic field of
the curved conductors in a bias field form a waveguide with
varying height. (b) Potential for a current of 1 A in the inner
conductors and a homogeneous bias field of 10 G.

with k = mgb. This leads to an harmonic oscillation with
the frequency

ω =

√
k

m
=

√
gb.

The oscillation frequency with the parameters given above
is ω = 2π × 11.4 Hz. These kind of traps could find use in
measurements of gravity since the oscillation frequency of
a condensate can be measured with high accuracy [17].

4.2 One wire with changing width

Gravitational traps can be miniaturized by changing the
width of the conductor which is used for generating the
waveguide. The geometry of conductors for potential wells
and barriers, as well as the corresponding gravitational po-
tentials, are plotted in Figure 8. For the entire potential
experienced by a cloud of paramagnetic atoms, the mag-
netic field components due to changes in the conductor
geometry have to be taken into account.

5 Conclusion

We have demonstrated the fabrication of magnetic wave
guides for atoms with gold conductors on an aluminium
oxide substrate. By using a set of parallel conductors the
confinement can be as high as in standard optical traps
even for large distances from the surface where unwanted
surface effects can be neglected. On the same chip also
spatial beam splitter geometries have been realized. Fi-
nally, gravitational traps are demonstrated with an axial
oscillation frequency proportional to the square root of
the gravitational constant g. Condensates in such traps
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Fig. 8. Sketch of miniaturized gravitational traps. Broadening
the conductor decreases the distance of the waveguide to the
surface, narrowing increases it. In gravity, the axial potential
of a waveguide exhibits gravitational barriers and wells.

offer novel perspectives for the construction of gravime-
ters since they oscillate practically frictionless with a very
high Q-factor.
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